Phase recovery, MaxCut and complex semidefinite programming
نویسندگان
چکیده
Phase retrieval seeks to recover a signal x ∈ C from the amplitude |Ax| of linear measurements Ax ∈ C. We cast the phase retrieval problem as a non-convex quadratic program over a complex phase vector and formulate a tractable relaxation (called PhaseCut) similar to the classical MaxCut semidefinite program. We solve this problem using a provably convergent block coordinate descent algorithm whose structure is similar to that of the original greedy algorithm in Gerchberg and Saxton [1972], where each iteration is a matrix vector product. Numerical results show the performance of this approach over three different phase retrieval problems, in comparison with greedy phase retrieval algorithms and matrix completion formulations.
منابع مشابه
Advanced Optimization Laboratory Title : A semidefinite programming based polyhedral cut and price approach for the maxcut problem
We investigate solution of the maximum cut problem using a polyhedral cut and price approach. The dual of the well-known SDP relaxation of maxcut is formulated as a semi-infinite linear programming problem, which is solved within an interior point cutting plane algorithm in a dual setting; this constitutes the pricing (column generation) phase of the algorithm. Cutting planes based on the polyh...
متن کاملTitle: a Semidefinite Programming Based Polyhedral Cut and Price Approach for the Maxcut Problem a Semidefinite Programming Based Polyhedral Cut and Price Approach for the Maxcut Problem
We investigate solution of the maximum cut problem using a polyhedral cut and price approach. The dual of the well-known SDP relaxation of maxcut is formulated as a semi-infinite linear programming problem, which is solved within an interior point cutting plane algorithm in a dual setting; this constitutes the pricing (column generation) phase of the algorithm. Cutting planes based on the polyh...
متن کاملA Semidefinite Programming Based Polyhedral Cut and Price Approach for the Maxcut Problem
We investigate solution of the maximum cut problem using a polyhedral cut and price approach. The dual of the well-known SDP relaxation of maxcut is formulated as a semi-infinite linear programming problem, which is solved within an interior point cutting plane algorithm in a dual setting; this constitutes the pricing (column generation) phase of the algorithm. Cutting planes based on the polyh...
متن کاملSpace-Efficient Approximation Algorithms for MAXCUT and COLORING Semidefinite Programs
The essential part of the best known approximation algorithm for graph MAXCUT is approximately solving MAXCUT’s semidefinite relaxation. For a graph with n nodes and m edges, previous work on solving its semidefinite relaxation for MAXCUT requires space Õ(n). Under the assumption of exact arithmetic, we show how an approximate solution can be found in space O(m + n), where O(m) comes from the i...
متن کاملA Projected Gradient Algorithm for Solving the Maxcut Sdp Relaxation∗
In this paper, we develop a specialized algorithm for solving the semidefinite programming (SDP) relaxation of the maximum cut (maxcut) problem. The maxcut problem has many applications, e.g., in VLSI design and statistical physics (see [2, 4, 5, 19, 21]). Several algorithms have been proposed to find either exact or approximate solutions to this problem. As for many combinatorial optimization ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 149 شماره
صفحات -
تاریخ انتشار 2015